Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT The chemistry of plasma–liquid interactions involves a complex interplay of physical and chemical processes at the plasma–liquid interface. These interactions give rise to the generation, transport, and transformation of various reactive species. Since the publication of the Lorenz Roadmap in 2016, significant progress has been made in understanding the interfacial transport and coupled reactions of plasma‐generated species with inorganic and organic compounds. However, critical aspects of plasma–liquid chemistry and mass transfer still require further investigation. This review summarizes recent work on processes at the plasma–liquid interface and the coupled reactions in the liquid phase. We highlight key findings related to the involvement of O atoms, H radicals, solvated electrons, photons, and nitrogen‐derived species at the interface and within the bulk liquid.more » « lessFree, publicly-accessible full text available January 1, 2026
-
null (Ed.)The influence of pulse frequency (1−60 kHz) in a nanosecond filamentary discharge propagating along a flowing liquid water film was assessed with regards to the formation of chemical species with argon and helium carrier gasses. The production rate and energy yield for H₂O₂ and H₂ were measured for both carrier gases, and O₂ formation was determined for helium. The effect of pulse frequency on the energy dissipated per pulse as well as electron density was also investigated. The results indicate that the energy yield for H₂O₂ decreases with increasing pulse frequency while the energy yields of H₂ and O₂ remain relatively unaffected. It is proposed that the difference in the trends of the liquid versus the significantly longer residence time of the liquid phase allowing for more degradation of formed hydrogen peroxide before it is able exit the reactor.more » « less
-
Abstract A continuous gas–liquid flowing film reactor with a nanosecond‐pulsed power supply was utilized for the degradation of perfluorooctanoic acid (PFOA) as assessed by fluoride (F−) formation. PFOA, 50 mg/L, dissolved in deionized water was supplied at 2 ml/min with an argon carrier gas. The liquid phase was analyzed for F−using ion chromatography. The power supply pulse frequency (f) was varied between 0.25‐ and 10‐kHz using a constant 16‐kV input voltage and 40‐ns pulse width. The highest F−production rate (), 1.57 × 10−8 mol/s, occurred at 5 kHz whereas the highest efficiency of F−production (), 9.12 × 10−9 mol/J, was found at 0.25 kHz.more » « less
An official website of the United States government
